LUCL

Heavy Diboson Production at the Tevatron

David Waters University College London

- What are we Measuring & Why?
- WW and WZ Production
- Anomalous Couplings
- First Measurement of ZZ Production
- Summary

Heavy Diboson Production at the Tevatron

Leading order diagrams:

- ► (QCD) production : PDF's, (NLO/LO) k-factors, diboson-p_T spectrum.
- ► (EWK) production : Triple Gauge Couplings predicted by SU(2)_L ⊗ U(1)_Y.
- Measuring the production cross sections and kinematics provide a verification of all these production model ingredients.

Heavy Diboson Production at the Tevatron

Heavy diboson production as a signature of new physics :

- Indeed, heavy diboson production is intimately related to Higgs searches:
 - ▶ WW production is a (quasi-) irreducible background to H→WW
 - ▶ WZ and ZZ production are critical backgrounds to WH & ZH assoc. prod.
 - ► Technically many of the techniques developed for diboson measurements have applications in Higgs searches.
 - ► Heavy diboson measurements provide a "standard-candle" for the measurement of very small cross sections.

Overview of Channels

Channel	Events/Experiment in 1fb ⁻¹	Signal/ Background	Significance of Observation (Gaussian σ equivalent)
$WW \rightarrow lvlv$	580	~2	>> 5
$WW/WZ \rightarrow lvjj$	4100	~0.01	~1.7
$WZ \rightarrow lvll$	50	~2-4	> 5
$ZZ \rightarrow llll$	6	~10-20	4.4
$ZZ \rightarrow llvv$	40	~0.05-0.25	4.4

CDF Detector

DØ detector : previous talk

Drift chamber outer tracker:

 $\delta p_T / p_T \approx 0.0005 \times p_T$ [GeV/c; beam constrained]; $|\eta| < 1$

Silicon vertex detector:

tracking coverage out to $|\eta| < 2.8$

Central calorimeter: $\delta E_T/E_T \approx 13.5\%/\sqrt{E_T} \oplus 1.5\% \quad |\eta| < 1.1$

Plug calorimeter: coverage out to $|\eta| < 3.0$

Muon chambers: coverage out to $|\eta| < 1.0$

Optimising Sensitivity

Major technical advance : maximise single-lepton acceptance.

WW

First observed by DØ and CDF in 2004 in ~200 pb⁻¹ samples.

PRL 94, 211801 PRL 94, 151801

▶ DØ (240 pb⁻¹) : 25 candidates, expected background ~8

$$\sigma(WW) = 13.8^{+4.3}_{-3.8} \text{ (stat.)} ^{+1.2}_{-0.9} \text{ (syst.)} \pm 0.9 \text{ (lumi.) pb}$$

$$[\sigma_{NLO}(WW) = 12.4 \pm 0.8 \text{ pb}]$$

► CDF (update using 825 pb⁻¹): 95 candidates, expected background ~38

$$\sigma(WW) = 13.6 \pm 2.3 \text{ (stat.)} \pm 1.6 \text{ (syst.)} \pm 1.2 \text{ (lumi.)} \text{ pb}$$

- Well understood samples.
- Starting point for H→WW searches.

WZ

First observed in 2006 in ~1 fb⁻¹ samples.

PRD 76, 111104(R) PRL 98, 161801

- Recent updates in tri-lepton channel :
 - ▶ DØ (1 fb⁻¹): 13 candidates against expected background of 4.5 ± 0.6

$$\sigma(WZ) = 2.7 + 1.7 + 1.7 = 1.3 \text{ (stat. + syst.) pb} \qquad [\sigma_{NLO}(WZ) = 3.7 \pm 0.3 \text{ pb}]$$

► CDF (1.9 fb⁻¹): 25 candidates against expected background of 4.7 ± 0.8:

$$\sigma(WZ) = 4.4^{+1.3}_{-1.0} \text{ (stat.)} \pm 0.2 \text{ (syst.)} \pm 0.3 \text{ (lumi.)} \text{ pb}$$

7-11 April 2008

DIS'08: Heavy Diboson Production at the Tevatron

WWZ Anomalous Couplings

• WZ production probes WWZ vertex independent of WWγ (cf. LEP2).

• $p_T(Z)$ is the kinematic observable most sensitive to anomalous WWZ couplings.

WWZ Anomalous Couplings

95% Confidence Level Intervals for Λ =2 TeV (*)			
CDF (1.9 fb ⁻¹) DØ (1.0 fb ⁻¹)			
$-0.13 < \lambda_Z < 0.14$	$-0.17 < \lambda_Z < 0.21$		
$-0.13 < \Delta g_1^Z < 0.23$	$-0.14 < \Delta g_1^Z < 0.34$		
$-0.76 < \Delta \kappa_Z < 1.18$	$-0.12 < \Delta \kappa_Z = \Delta g_1^Z < 0.29$		

(*) AC definitions as per Hagiwara et al. 1987

WW/WZ→Ivjj (CDF)

- Very challenging experimentally :
 - ► 5-10 × more signal compared to fully leptonic channels
 - ► 1000 × more background (S/B ~ 1%)
 - Similar final state to WH→Ivjj
 - Potentially greater sensitivity to anomalous couplings

(II) Then fit m_{ii} distribution:

WW/WZ→Ivjj (CDF)

N _{signal}	410 ± 212 (stat) ± 107 (syst) pb		
Observed	$\sigma \times BR = 1.47 \pm 0.77 \text{ (stat)} \pm 0.38 \text{ (syst) pb}$		
95% Limit	σ × BR < 2.88 pb		
NLO Prediction	$\sigma \times BR = 2.09 \pm 0.14 \text{ pb}$		

ZZ→IIII (DØ)

- 4-lepton final state has very low backgrounds (mainly Z+jets).
- Wide mass range $m_{\parallel}>30$ GeV/c² includes Z/γ^* .

1 fb ⁻¹	eeee	ееµµ	μμμμ	Total
ZZ	0.44±0.03	0.81±0.09	0.46±0.05	1.71±0.15
Background	0.080±0.021	0.013±0.004	0.033±0.006	0.13±0.03
Data	0	1	0	1

$$\sigma(ZZ) < 4.4 \text{ pb}$$
 [$\sigma_{NLO}(ZZ) = 1.6 \text{ pb}$]

- No s-channel contribution to ZZ production at LO in the Standard Model.
- Tighter mass cuts to define resonant Z's.
- Zero events → set AC limits.

ZZ→IIII (CDF)

Mass range $m_{\parallel} \in [76,106]$ and [40,140] GeV/c² to include Z/γ^* .

Very small backgrounds from Z(γ)+jets

Separate high and low purity samples to extract maximum sensitivity:

	Candidates without	Candidates with
Category	a trackless electron	a trackless electron
ZZ	$1.990 \pm 0.013 \pm 0.210$	$0.278 \pm 0.005 \pm 0.029$
$Z+{ m jets}$	$0.014^{+0.010}_{-0.007} \pm 0.003$	$0.082^{+0.089}_{-0.060} \pm 0.016$
Total	$2.004^{+0.016}_{-0.015} \pm 0.210$	$0.360^{+0.089}_{-0.060} \pm 0.033$
Observed	2	1

ZZ→IIII (CDF)

- Example ZZ→μμμμ event.
- ▶ 3 out of 4 muons missed by muon chambers! Smart lepton ID essential.

ZZ→IIvv (DØ)

- Recall : BR(ZZ→IIvv) ~ 6 × BR(Z→IIII).
- But backgrounds are much worse.
- Define a (signed) missing-E_T like object :

- ► Most backgrounds removed by requiring missing-E_T be *large* and *significant*.
- ▶ The WW background (real missing- E_{T}) can only be separated statistically.

ZZ→IIvv (DØ)

Use kinematic information to form a signal/background likelihood discriminant.

- + leading lepton p_T
- + l- polar angle in l+l- rest-frame
- opening angle between dilepton and leading lepton

Probability of background alone giving rise to the observed likelihood distribution :

2.2 fb ⁻¹	eevv	μμνν	Combined
p-value	0.1140	0.0052	0.0082
(expected)	(0.0753)	(0.1100)	(0.0387)
significance	1.21	2.57	2.40 σ
(expected)	(1.44)	(1.23)	(1.77)

$$\sigma(ZZ) = 2.1 \pm 1.1(stat.) \pm 0.4(syst.) pb$$

$$[\sigma_{NLO}(ZZ) = 1.6 \pm 0.1 \text{ pb}]$$

ZZ→IIvv (CDF)

CDF use full kinematic information to try to dig out S/B~20 :

 Discrimination against the dominant background is obtained by forming the likelihood ratio :

$$LR = \frac{P_{ZZ}}{P_{ZZ} + P_{WW}}$$

ZZ→IIvv (CDF)

- The data contain high probability ZZ events, e.g. ZZ→eevv shown.
- Probability of background alone describing the data is 0.12 (1.2σ)

ZZ Combination (CDF)

Extend the likelihood discriminant to include the two (high-purity and lower-purity)
 4-lepton measurements:

1.9 fb ⁻¹	IIνν	4-lepton	Combined
p-value	0.12	1.1×10 ⁻⁵	5.1×10 ⁻⁶
significance	1.2	4.2	4.4 σ

• Expected : 50/50 chance of seeing a 5σ effect.

$$\sigma(ZZ) = 1.4^{+0.7}_{-0.6}$$
 (stat. + syst.) pb $[\sigma_{NLO}(ZZ) = 1.4 \pm 0.1 \text{ pb}]$

ZZ Measurement

Summary

Effective Missing-E_T Definition

Combines elements of missing-E_T and missing-E_T significance:

ZZ→IIvv (DØ)

ZZ→IIII (CDF)

